Расчет скважинного насоса воды на 50 квартир. Расчет мощности насоса по давлению и расходу. Расчет производительности насосов. Расчет3. Учет дебета скважины

Расчет насоса для скважины производится после изготовления скважины, получения паспорта на нее. Документация выдается специалистами компаний, в которых заказывается услуга. В ней указаны основные параметры скважины – подача, уровни зеркала, конструкция фильтра на забое. При заполнении паспорта скважины применяется профессиональное оборудование, многократно превосходящее бытовые насосы. Поэтому пользователь может смело выбирать любую модификацию поверхностного, погружного насоса в указанных пределах. В идеале производительность скважинного насоса должна быть на 5-10% меньше, чем аналогичный показатель источника водозабора. Рис. 1.

Рисунок 1. Схема источника водозабора.

Расчет в обязательном порядке учитывает характеристики:

  • количество сантехнических приборов;
  • схема их расположения;
  • суточная потребность семьи в жидкости;
  • классификация используемой системы водоподготовки.

Расчеты погружных моделей отличаются от вычислений для поверхностных насосов. Оптимальным вариантом скважинного насоса является винтовая, вихревая, центробежная модификация оборудования, допускающие 40 г/л либо 180 г/л примесей соответственно. Вибрационные насосы резко снижают бюджет водообеспечения коттеджа, однако имеют низкий ресурс, выходят из строя при обилии песка.

Производительность погружного насоса

Для расчета производительности насоса для скважины необходимо знать величину расхода. Этот показатель складывается из расхода жидкости в нескольких сантехнических приборах, используемых одновременно. Для удобства вычислений данные сведены в таблицу:

Расчет производится с поправочным коэффициентом 0,6-0,8, так как вероятность одновременного включения всех потребителей не превышает 60-80% соответственно. В нормативах СНиП присутствуют таблицы, облегчающие расчеты в нестандартных ситуациях (например, проживание семьи из двух человек в двухэтажном особняке с санузлами на каждом этаже). В них заложены значения, основанные на реальном эксплуатационном опыте. Например, если при сложении суммарного расхода по имеющимся сантехническим приборам получается 1 л/с, то в таблице этому значению соответствует реальное потребление 0,55 л/с. Для расчетного расхода 5 л/с, 10 л/с, 15 л/с практические значения составят 1,27 л/с, 1,78 л/с, 2,17 л/с соответственно.

Таким образом, добавляется поправочный коэффициент 3,6. В любом случае дебит насоса должен превышать потребность семьи в воде.

Пример для погружного насоса в коттедже

Расчет для частного коттеджа производится с учетом имеющихся сантехнических приборов:

  • унитаз – 0,1;
  • умывальник – 0,09;
  • кухонная мойка – 0,15;
  • водонагреватель – 0,1;
  • душ + смеситель – 0,09.

Общий расход в доме получится равным 0,53 л ежесекундно, затем к нему добавляется уличный поливочный кран (0,3 л/с), что составит 0,83 л/с. Данному значению в таблице соответствует реальная характеристика 0,48 л/с, которая после умножения на поправочный коэффициент дает 1,73 куба ежесекундно. Если в паспорте насоса указана производительность в л/ч, то расчеты на последнем этапе изменяются – значение из таблицы достаточно умножить на 3 600 секунд.

В конкретном примере расчета насоса производительность оборудования должна превышать показатель 1,73 куба ежечасно. Сравнив характеристики моделей ведущих производителей, получаем, что для данных эксплуатационных условий подойдут:

Рисунок 2. Модификации насоса

  • модель 45 Pedrollo 4SR – 2 м 3 /ч;
  • насос 80 Aquatica 96 – 2 м 3 /ч;
  • модификация 25Sprut 90QJD – 2 м 3 /ч;
  • варианты 63 Водолей НВП, 32 Водолей НВП – 1,8 м 3 /ч.

На этом выбор насоса не заканчивается, так как следующий параметр не менее важен для увеличения эксплуатационного ресурса. Рис. 2.

Напор погружного насоса

Скважинный насос находится внутри перекачиваемой жидкости. Поэтому для этих условий не учитывается разница высот между оборудованием, зеркалом воды. При выборе поверхностных модификаций (обычно, насосная станция) этот параметр присутствует в вычислениях в обязательном порядке.

Расчет насоса по напору производится сложением трех величин:

  • изливный напор – принимается 15-20 м;
  • потери в трубопроводе – данные сведены в таблицы;
  • перепад высот между сантехническими приборами, зеркалом воды.

Таблица потерь давления учитывает трение в трубах из различного материала, фитингах, запорной арматуре, клапанах. Учитывается скорость потока, на которую в большей степени влияет внутреннее сечение труб. Поэтому для вычислений потребуется схема внутренней разводки, наружного водопровода.

Пример расчета напора погружного насоса

В заданных условиях скважинный насос используется в следующей системе водообеспечения:

  • скважина – 35 м от поверхности;
  • уровни – динамический 15 м, статический 10 м;
  • дебит – 4 м 3 ежечасно;
  • удаление от коттеджа – 30 м;
  • высшая точка сантехнического прибора – 5 м (мансарда).

Схема установки скважинного насоса и графический расчет напора.

Согласно нормативам СНиП, СанПиН, скважину следует удалить от здания на 50 – 20 м, от септика автономной системы водоотведения на 15 м. на первом этапе определяется перепад высот:

Н 1 = отметка сантехприбора + динамический уровень = 5 + 15 = 20 м.

Для подсчета потерь напора необходимо рассмотреть схему водопровода:

  • от скважин до дома обычно используется 32 мм труба из полипропилена;
  • внутренняя разводка выполняется 25 мм трубой из этого же материала;
  • в схеме присутствует один вентиль, два тройника (полив + бытовая линия), три обратных клапана, один отвод 90 градусов;
  • согласно предыдущему расчету, производительность равна 1,73 куба, значение округляется до табличного 1,8 м 3 /ч;
  • потери составят 30 м, напор свободного излива принимается равным 20 м, перепад высот определен выше, составляет 20 м, таким образом, напор оборудования должен превышать 70 м.

Характеристики каждого насоса для скважины, рассмотренного на предыдущем этапе, удовлетворяют заданным условиям эксплуатации. Скважина оборудуется любым из них в соответствии с имеющимся бюджетом. Вычисления не будут полными без расчета гидроаккумулятора, необходимого для обеспечения запаса воды, увеличения ресурса насосного оборудования, сглаживания гидроударов внутри системы водообеспечения.

Мембранный бак для водоснабжения

Для бытовой скважины применяются гидроаккумуляторы различной конструкции, материалов, объемов. Для вычислений потребуются следующие данные:

Насосы для скважины могут быть погружные и поверхностные.

  • номинальная производительность оборудования – 60% от максимальной подачи насоса;
  • разница давлений – Р 1 – Р 2 (давление включения на 10% ниже максимального, указанного в паспорте, давление отключения на 10% выше минимального);
  • ежечасное число включений – обычно заявлено производителями 100;
  • давление включения;
  • коэффициент – 0,9 единиц.

Для получения объема мембранного бака необходимо:

  • сложить давление включения, единицу, разницу давлений;
  • умножить полученное число на 1000, номинальный расход;
  • разделить результат на 4, максимальное число ежечасных включений, разницу давлений, коэффициент.

Производители выпускают накопительные баки стандартных объемов, после вычисления необходимого объема гидроаккумулятора останется выбрать ближайший размер с 15% запасом. Колодец обычно используется в зимних/летних схемах водопровода жилищ сезонного, периодического проживания. При каждом отъезде хозяев система консервируется, вода сливается из контуров через спускную магистраль. Объема скважины для этого недостаточно, дополнительный заглубленный в землю резервуар увеличивает эксплуатационные расходы. Поэтому используется бюджетный вариант в виде колодца.

Поверхностные насосы являются самовсасывающими конструкциями, используются при небольших глубинах 8-12 м. Поднять воду из артезианской скважины 100-200 м можно лишь профессиональным оборудованием, которое для бюджета семьи слишком дорого. В них используются эжекторы, скважины удовлетворяют потребности целых коттеджных поселков.

Производительность поверхностного самовсасывающего оборудования вычисляется аналогично предыдущему случаю. При расчете напора учитывается взаимное расположение элементов водопровода:

  • насос может располагаться в цоколе, подсобном помещении нижнего этажа, в техподполье, кессоне на устье скважины;
  • гидроаккумулятор монтируют на любом уровне.

Вычисления аналогичны расчетам для погружных насосов, однако добавляется вычитание из напора Н б. Это значение потерь в зависимости от высоты бака – разница высот гидроаккумулятора, зеркала водозабора. Если взять вариант расчета для двухэтажного коттеджа со следующими характеристиками:

  • удаление источника от здания 20 м;
  • подъем воды с глубины 6 м трубой насоса;
  • зеркало водозабора на глубине 4 м;
  • общая глубина скважины 10 м;
  • расположение насоса в кессоне;
  • высота санузла 5 м.

Перепад высот составит 5 м. При схеме с двумя 90 градусными отводами, парой вентилей, тремя тройниками, тремя обратными клапанами, аналогичным сечением труб (25 мм внутренняя, 32 мм наружная) от насоса потребуется производительность 3 куба ежеминутно. Потери напора составят 37 м, напор излива 20 м, высота источника 6 м. Таким образом, для автономной системы водообеспечения потребуется насос с напором больше 70 м, что является редкостью у моделей большинства производителей. В данном случае рациональным решением будет использование погружной модификации после аналогичного расчета.

Циркуляционный насос - это небольшое по размеру устройство, главная задача которого заключается в улучшении работы и повышении производительности системы отопления. Он врезается непосредственно в трубопровод, оптимизируя скорость перемещения теплового носителя. Благодаря чему даже дом с большой жилой площадью будет обогреваться достаточно быстро.

Чтобы купить оптимальную модель, предстоит разобраться с тем, как рассчитать насос для отопления и на какие нюансы ориентироваться при выборе. Именно этим вопросам посвящена наша статья – в этом материале мы рассмотрели пример расчета оборудования, уделили внимание принципу работы и основным разновидностям насосов.

Также мы привели рекомендации по выбору, монтажу и безопасной эксплуатации насосного оборудования, снабдив статью наглядными и фото и подходящими видеороликами с расчетом необходимой мощности прибора и советами по его монтажу в отопительный контур.

Основная проблема жителей последних этажей многоквартирной постройки и владельцев загородных коттеджей - это холодные батареи. В первом случае теплоноситель просто-напросто не доходит до их жилья, а во втором - не обогреваются самые дальние участки трубопровода. А все это из-за недостаточного .

Когда необходимо применять насос?

Единственным правильным решением в ситуации с недостаточным давлением будет модернизация отопительной системы с теплоносителем, циркулирующим под действием силы гравитации. Здесь поможет установка насоса. Основные схемы организации отопления с насосной циркуляцией .

Этот вариант будет эффективен и для владельцев частных домов, позволяя ощутимо уменьшить расходы на отопление. Существенное преимущество такого циркуляционного оборудования - возможность менять скорость движения теплоносителя. Главное, не превышать максимально допустимые показания для диаметра труб своей отопительной системы, чтобы избежать излишнего шума при работе агрегата.

Так, для жилых комнат при условном проходе труб в 20 и более мм скорость составляет 1 м/с. Если установить этот параметр на самое высокое значение, то можно за максимально короткое время прогреть дом, что актуально в случае, когда хозяева были в отъезде и постройка успела остыть. Это позволит получить максимальное количество тепла при минимальных затратах времени.

Насос - важный элемент системы обогрева дома. Он помогает повысить ее эффективность и снизить траты топлива

Принцип работы прибора

Циркуляционный агрегат функционирует за счет электродвигателя. Он забирает нагретую воду с одной стороны и подталкивает в трубопровод, находящийся с другой. А с этой стороны снова поступает новая порция и все повторяется.

Именно за счет центробежной силы тепловой носитель перемещается по трубам системы обогрева. Процесс функционирования насоса немного напоминает работу вентилятора, только циркулирует не воздух по комнате, а теплоноситель по трубопроводу.

Корпус устройства обязательно выполняется из устойчивых к коррозии материалов, а для изготовления вала, ротора и колеса с лопастями обычно используется керамика.

Основные виды насосов для отопления

Все предлагаемое производителями оборудование делится на две большие группы: насосы «мокрого» или «сухого» типа. Каждый вид имеет свои преимущества и недостатки, что обязательно нужно учитывать при выборе.

Оборудование «мокрого» типа

Насосы отопления, называемые «мокрыми», отличаются от своих аналогов тем, что их рабочее колесо и ротор помещен в тепловой носитель. При этом электрический мотор находится в герметичном боксе, куда влага попасть не может.

Этот вариант - это идеальное решение для небольших загородных домов. Такие устройства отличаются своей бесшумностью и не нуждаются в тщательном и частом техническом обслуживании. К тому же они легко ремонтируются, настраиваются и могут применяться при стабильном или слабо изменяющемся уровне расхода воды.

Отличительной чертой современных моделей «мокрых» насосов является простота их эксплуатации. Благодаря наличию «умной» автоматики можно без каких-либо проблем увеличить производительность или переключить уровень обмоток

Что касается недостатков, то указанная выше категория отличается низкой производительностью. Обуславливается этот минус невозможностью обеспечения высокой герметичности гильзы, разделяющей тепловой носитель и статор.

«Сухая» разновидность приборов

Для этой категории устройств характерно отсутствие прямого контакта ротора с, перекачиваемой им нагретой, водой. Вся рабочая часть оборудования отделена от электрического двигателя резиновыми защитными кольцами.

Главная особенность такого отопительного оборудования - большая эффективность. Но из этого преимущества вытекает существенный недостаток в виде высокой шумности. Решается проблема путем установки агрегата в отдельной комнате с хорошей звукоизоляцией.

При выборе стоит учитывать тот факт, что насос «сухого» типа создает завихрения воздуха, поэтому мелкие частицы пыли могут подниматься, что негативно скажется на уплотнительных элементах и, соответственно, герметичности устройства.

Производители решили эту проблему так: при работе оборудования между резиновыми кольцами создается тонкий водяной слой. Он выполняет функцию смазки и предотвращает разрушение уплотнительных деталей.

Приборы, в свою очередь, делятся на три подгруппы:

  • вертикальные;
  • блочные;
  • консольные.

Особенность первой категории заключается в вертикальном расположении электродвигателя. Такое оборудование стоит покупать только в том случае, если планируется перекачка большого объема теплового носителя. Что касается блочных насосов, то они устанавливаются на ровной бетонной поверхности.

Предназначены блочные насосы для использования в промышленных целях, когда требуются большие расходные и напорные характеристики

Консольные устройства характеризуются расположением всасывающего патрубка с наружной стороны улитки, в то время как нагнетательный находится на корпусе с противоположной.

Более подробно об устройстве и принципе работы насосов мы говорили .

На что ориентироваться при выборе насоса?

Подбор насоса для автономного отопления нужно делать исходя из гидравлических характеристик системы обогрева загородного дома. Поэтому перед посещением магазина предстоит подсчитать оптимальное количество тепла, которое потребуется для поддержания в комнатах комфортной для проживания температуры.

Правила и нюансы эксплуатации оборудования

Циркуляционный насос покупается не на год и даже не на два. Поэтому каждый владелец загородного дома должен позаботиться, чтобы оборудование было исправно в течение долгих лет. Добиться надежности и корректности работы устройства можно только в случае правильного и своевременного обслуживания.

В список основных правил эксплуатации насоса отопления необходимо включить следующие аспекты:

  • запрещено включать прибор с нулевой подачей;
  • убедиться, что оборудование заземлено;
  • проконтролировать, чтобы электрический мотор не нагревался выше допустимой нормы;
  • проверить соединение в клеммном коробе на наличие/отсутствие повреждений, а все кабели должны быть полностью сухими;
  • удостовериться, что во время старта устройства не возникает никакого постороннего шума или вибрации;
  • оборудование должно работать с рекомендованным производителем уровнем расхода теплоносителя;
  • запрещено запускать циркуляционный насос без воды.

Если оборудование простаивает на протяжении длительного времени, то рекомендуется каждый месяц включать его на 10-30 минут. Такое простое правило поможет избежать окисления и, как результат, блокировки вала.

В случае появления каких-либо сбоев или проблем в работе насоса следует в кратчайшее время вызвать мастера. Это поможет избавиться от множества проблем и незапланированных финансовых трат

Особое внимание необходимо уделить температуре . Она не должна превышать 60-65 градусов Цельсия. Если пренебречь этим правилом, то в трубах и внутри насоса будет появляться осадок, который негативно скажется на работе всей системы отопления.

Часто встречаемые поломки

Наиболее распространенная проблема, из-за которой оборудование, обеспечивающее принудительную перекачку теплоносителя, выходит из строя - это его длительный простой.

Чаще всего система отопления активно используется зимой, а в теплое время года отключается. Но так как вода в ней не отличается чистотой, то со временем в трубах выпадает осадок. Из-за накопления солей жесткости между крыльчаткой и насосом агрегат перестает работать и может выйти из строя.

Решается вышеуказанная проблема достаточно легко. Для этого нужно попытаться самостоятельно запустить оборудование, открутив гайку и вручную повернув вал насоса. Нередко такого действия бывает более чем достаточно.

Если прибор все-таки не запустился, то единственным выходом будет демонтаж ротора и последующая основательная чистка насоса от накопившегося осадка солей.

Выводы и полезное видео по теме

О расчете производительности циркуляционного оборудования повествует видео:

Правильная установка является залогом отличной работы любого прибора. Особенности монтажа насоса для отопления в видеоролике:

Система отопления, где для организации движения теплоносителя используется насос, имеет множество достоинств. Но чтобы безошибочно установить ее, придется потратить немного времени на разбор нюансов и выбор оборудования. Только в таком случае можно сделать свой дом поистине теплым и уютным .

Хотите добавить насос в систему отопления, но сомневаетесь в расчетах? Задайте интересующие вас вопросы в блоке комментариев – наши эксперты постараются вам помочь.

А может вы хотите дополнить наш материал полезными замечаниями? Или предложить другой вариант расчета отопительного насоса? Пишите свои замечания и рекомендации под этой статьей.

Для обеспечения бесперебойной работы скважины необходимо использовать специальное оборудование. Одним из основных в этом списке является насос. Чтобы обеспечить бесшумную работу, применяется погружной агрегат, который отличается качеством и компактными размерами, во время работы он не создает шума. Но выбор насоса не так прост, требуется учитывать многочисленные параметры, выполнять расчет в соответствии со всеми требованиями и нормами.

Для бесперебойного поступления воды из скважины, нужно правильно выбрать насос по мощности.

Параметры насоса

При важно провести расчеты, которые покажут, какая производительность требуется. Нельзя покупать слишком слабый либо мощный агрегат, так как это сразу вызовет множество проблем, потребуются дополнительные финансовые расходы. Расчет обязательно включает в себя получение данных о напоре воды Н и расходе воды Q.

При вычислении данных по указанным параметрам можно пользоваться такими показателями:

  • умывальник – расход составляет 60 л/час;
  • бачок для унитаза – 83 л/ч, если не используется экономичная модель, снижающая расход примерно в 3-4 раза;
  • кухонная раковина – 500 л/ч;
  • краны для полива газонов и прочего – примерно 1080 л/ч. Дополнительно требуется суммировать теплицы и прочее, если они имеются на участке;
  • для цветников необходимо примерно 3-6 куба на 1 м² площади;
  • баня, сауна – расход составляет 1000 л/ч.

Все точки для определения расхода суммируются, получается общее значение для потребления воды за час. Расчет напора производится при помощи такой формулы:

Hтр = Hг + S + Hсв

Тут Нг представляет собой высоту уровня трубопровода относительно наблюдаемого динамического уровня скважины. S – это суммарные потери напора, местное сопротивление. Это касается арматуры водопровода, фильтров, фасонных деталей и прочего. Нсв – напор, который требуется при вводе трубы в здание. Давление на самой высокой точке и удаленной от источника должно быть равно 0,5 атмосферы.

Если в доме будут использоваться джакузи, разбрызгиватели, системы для полива, то надо учитывать параметры, которые указываются производителем в инструкции . Для бассейнов требуется учитывать время наполнения, но лучше всего использовать данные компании, которая занималась его установкой. Для монтажа оборудования в бассейне стоит пригласить специалиста, который и произведет необходимый расчет в точности. Расчет насоса – процесс важный и ответственный, ошибки приводят к тому, что монтаж сильно затрудняется, возникает необходимость дополнительных расходов на оборудование и обслуживание всей системы.

Вернуться к оглавлению

Пример расчета

Расчет насоса для скважины может быть произведен самостоятельно. Более наглядно весь процесс вычислений продемонстрирован на примере.

Исходные данные для вычислений:

  1. Необходимо организовать водоснабжение для двухэтажного загородного коттеджа. Точки водораздела включают кухню, 2 санузла, душевую с гидромассажной системой, гараж, домик для персонала с одним санузлом, бассейн, баню, полив для участка, систему очистки воды. Для дома общий расход воды составляет примерно 1 м³/ч при напоре в 4-5 атмосфер. Объем бассейна составляет 45 м³.
  2. На участке постоянно проживают 6 человек, из которых семья из 4 человек и 2 – обслуживающий персонал.

Для участка пробурена скважина, глубина которой составляет 80 м, диаметр используемой обсадной колонны составляет 150 мм. Динамический уровень воды равен 50 м, а расход во время откачки – 3,5 м³/час.

Выполняя расчет для выбора насоса, надо учесть нормы расхода потребителей при заданных условиях:

Q= 500 + 3*(60 + 500 + 83) + 1000*2 + 1060*2 = 6500 л/ч

Отсюда следует, что суммарный расход составляет 6,5 м³/ч.

В итоге получается:

Нтр = 8 + 50 + 20 + 30 + 2 = 110 м.

Так как все водозаборные точки сразу не включаются, то наблюдаемый расход можно установить на уровне 5 м³/ч. Для выбора насоса будут учитываться именно такие данные. Для получения данных по возможным моделям насосов можно обратиться к любому продавцу выбранной марки. Например, насос Grundfos SP 5A обеспечивает такие характеристики работы: Н – 120 м, а Q = 5 м³/ч.

Выбор такого насоса позволяет обеспечить необходимый расход для одновременной работы нескольких точек на кухне, наполнения одной ванны, полива территории. Но такой насос подходит, если одновременно не будут включаться краны бани, всех санузлов, производиться наполнение бассейна.

Специалисты советуют приобретать отдельный насос для поливочных установок, в таком случае будет постоянно обеспечиваться необходимый высокий уровень давления.

Что касается бассейна, то его лучше всего наполнять ночью, когда другие точки не используются. Но при этом рекомендуется создавать так называемое дросселирование на заслонках, чтобы появилось необходимое сопротивление. Таким образом, во время наполнения подача воды не будет превышать расчетных 6,5 м³/ч.

Вернуться к оглавлению

Завышенная мощность

При выборе насосов для колодцев и скважин иногда случается так, что требования слишком завышены. Это приводит к тому, что монтаж и использование такого насоса могут быть осложнены:

  1. Номинальная подача превышает средние потребности, работа насоса для скважины осуществляется в режиме постоянных частых включений/отключений, а это отрицательно сказывается на состоянии оборудования, оно быстро изнашивается. Эту ситуацию можно исправить, но нужны дополнительные финансовые затраты. Например, можно установить мембранный бак, который имеет большой объем.
  2. При слишком завышенном значении мощности насосного оборудования входное давление в дом будет высоким, а это становится причиной сильных гидравлических ударов при включении. Арматура может быть на них не рассчитана, она может выйти из строя уже через некоторое время после монтажа всей системы. Вот тут уже необходима установка дополнительных редукторов, которые будут «гасить» такие перепады, но это снова дополнительные финансовые расходы.
  3. Если есть бассейн, то насос будет работать в режиме «открытой трубы», необходимого давления создаваться не будет. Расход становится слишком большим, на вал двигателя оказывается высокое давление, он быстро выходит из строя.

Помочь в данной ситуации, когда выбор сделан неправильно, может настройка, но необходимо участие специалиста. В любом случае покупка излишне мощного насоса приводит только к удорожанию системы, более сложному ее обслуживанию. Да и стоимость обслуживания системы будет выше. Хорошие глубинные насосы должны подбираться в строгом соответствии с расчетами, нельзя «на всякий случай» брать слишком мощное оборудование. Оно не только не нужно, но и создает дополнительные проблемы.

Организовать включение в систему централизованного водоснабжения частного дома, дачи или коттеджа удается нечасто. Обычно их владельцам приходится решать вопрос об автономной системе водообеспечения своего жилища.

Но, даже если есть возможность подключения к проходящему рядом с домом городскому или поселковому водопроводу, иметь при этом на участке независимый источник воды - не самая плохая идея как с точки зрения экономической, например, используя его для полива, так и в качестве гарантии от внезапных отключений центральной системы.

Система автономного водоснабжения частного дома состоит из нескольких компонентов:

  1. Водный источник :
  • - искусственная выработка‑шахта, выкопанная для сбора подземных грунтовых вод в поверхностном водоносном слое до глубины 10~15 м и укрепленная от осыпания.
  • . Выполняются методом бурения и бывают нескольких типов:
    • Безнапорные : «на песок» - до 50 м, «на известняк» - до 150 м.
    • Артезианские - свыше 150 м.
    • Абиссинские и др.
  • Искусственные водоемы . Емкости для сбора талых, дождевых вод. При имеющемся поблизости ключе или роднике можно организовать углубленный отвод его русла.
  • Естественные водоемы . Ручьи, реки, озера.
  • Потребители воды на участке и в доме : , раковины, ванны, сауны‑ , бассейны, .
  • Система подачи и распределения : , накопительные емкости, .
  • При проектировании автономной системы первым встает вопрос о подборе насоса для водоснабжения частного дома, как одной из самых ответственных и, если уж говорить о качестве работы и долговечности, наиболее дорогостоящей части гидротехнического оснащения. И выбор его обусловлен, прежде всего, типом источника воды на участке , а затем - выбранной схемой водоснабжения.

    Конструкционные различия

    Гидронасосы бывают следующих конструктивных типов:

    • Поршневые . Теперь уже практически не применяются для небольших насосных станций ввиду громоздкости, малого кпд, невысокого жизненного ресурса.
    • Центробежные . Одни из самых популярных и востребованных благодаря простоте конструкции, экономичности и высокой надежности.
    • Турбинные . Подобны центробежным, но не с боковым, а осевым расположением лопаток. Более мощные и производительные. Используются в основном на промышленных гидротехнических сооружениях.
    • Роторные или так называемые винтовые насосы. Отличаются малыми габаритами по диаметру, потому наиболее пригодны для подъема воды из скважин.
    • Вибрационные или мембранные . Дешевые, но малопроизводительные. Известны давно выпускающиеся для дачников модели «Ручеек», «Малыш».

    Виды по типу размещения

    По способу размещения водоснабжающие гидронасосы подразделяются на два класса:

    1. Поверхностного типа . Располагаясь в стороне от источника воды, обеспечивают ее всасывание по опущенной в колодец или скважину трубе.
    2. Погружные . Полностью опускаются в воду на некоторую глубину.

    Иногда в отдельный класс выделяют насосные станции , которые по сути являются компактным самодостаточным водонапорным комплексом, состоящим из поверхностного насоса, накопительного мембранного бака‑гидроаккумулятора, и схемы управления.

    Какой лучше выбрать?

    Перед тем как выбрать водяной насос для дома, следует сравнить преимущества и недостатки двух их основных видов:

    Поверхностные насосы Погружные
    Устанавливаются стационарно. Проще в обслуживании. Для ремонтно‑профилактических работ требуют подъема из скважины или колодца на поверхность.
    Нуждаются в двух трубопроводах: всасывающем и нагнетания. Работают только на нагнетание.
    Максимальная высота всасывания - 10 м. Реальная, с учетом потерь в трубопроводе и запаса на понижение уровня воды в колодце - не более 7~8 м. Подъем с глубины ниже 10 м.
    Нуждаются в заполнении жидкостью перед первым пуском или после ремонтных работ. Готовы к работе сразу после погружения.
    Существует опасность перегрева мотора при длительной работе. Погруженный в воду насос охлаждается как наружной водой извне, так и прокачиваемой изнутри.
    Необходимость консервации на зиму для летнего варианта водопровода. На зиму достаточно слить воду из системы.
    Работа сопровождается шумом. Бесшумны.

    Таким образом, для подъема воды из колодца проще использовать поверхностный насос или насосную станцию, а из скважины - погружной роторный либо центробежный.

    Пример расчета

    Основные необходимые данные для выбора подходящей модели поверхностного насоса для водоснабжения дома:

    • Максимальное значение расхода жидкости в л/мин или м³/ч.
    • Высота всасывания - разность уровней впускного патрубка насоса и поверхности воды в источнике.
    • Высота нагнетания - разность уровней наивысшей точки трубопровода и выпускного патрубка насоса.
    • Начальное давление , для безнапорной скважины или колодца равное атмосферному.
    • Конечное - требуемое давление в домашней системе водопровода.
    • Потери давления в трубопроводах зависят от расхода жидкости и качества поверхностей внутренних стенок трубопроводов, создающих трение ее движению.

    Высота всасывания гидронасосов поверхностного типа не может превышать 10,33 м - высоты водяного столба, создающего равное атмосферному давление.

    Для упрощения расчетов ее округляют до 10 м , а создаваемое давление приравнивают одной технической атмосфере, 1 ат = 1 кГс/см², или примерно 1 бару ~ 0,98 ат.

    Высота нагнетания, или напор, определяется техническими параметрами и мощностью агрегата .

    Часто значение напора путают с давлением, называя одно другим. Эти величины эквивалентны, но в точности не равны друг другу. Давление на выходе насоса зависит только от его технических характеристик, а напор - от совокупности внешних условий : скорости потока и расхода жидкости, ее температуры, высоты над уровнем моря и пр.

    При расчете все величины давлений системы в паскалях, барах, атмосферах и других единицах приводят к эквивалентным значениям напора в метрах .

    Приведем пример, приняв геодезический уровень размещения насосной станции за нулевой:

    • Расход жидкости, обеспечиваемый гидронасосом - 40 м³/ч. Это вполне достаточное значение потребления для нужд домашнего хозяйства.
    • Уровень воды в колодце ниже нулевого на 4 м.
    • Верхняя точка подъема воды на 15 м выше его.
    • Суммарные потери во впускном и выходном трубопроводах можно найти в таблицах для конкретного типа труб, но обычно их рассчитывают исходя из того, что на каждых 10 м трубопровода теряется 1 м напора, потому примем их равными (15 м + 4 м) / 10 = 1,9 м.
    • Конечное давление в верхней точке примем равным 1 бару ~ 9,87 м.

    Суммарный напор гидронасоса будет равен:

    4 м + 15 м + 1,9 + 9,87 = 30, 77 м.

    Если водонасосная станция устанавливается не в расположенном рядом с колодцем кессоне, а в доме, следует также учесть потери напора на длине подводящего трубопровода .

    Для каждого насоса существует эксплуатационная характеристика, показывающая падение напора в зависимости от расхода и имеющая примерно такой вид :

    Выбирая конкретную модель насоса, следует сообразовывать расчетные величины параметров с паспортными значениями для выбранного экземпляра агрегата в требуемой рабочей точке.

    Гидравлическую мощность насоса можно найти по эмпирической формуле:

    Р (Вт) = 2,725 x Расход (м³/ч) x Напор (м).

    Для нашего примера получим : 2,725 x 40 x 30,77 = 3,354 кВт.

    Подробнее о расчете и подборе насоса для водоснабжения загородного дома смотрите в этом видео:

    Включение в систему водоснабжения

    Как говорилось выше, более других удобны в установке и эксплуатации готовые насосные станции , технические характеристики которых пригодны для водообеспечения небольшого дома на семью из 2~3 человек или дачи.

    Подключение их сводится к нескольким простым шагам:

    • Выбор места размещения.
    • Подготовка надежного основания.
    • Подведение необходимых трубопроводов.
    • Всасывающую трубу, опускаемую в колодец, необходимо оборудовать сетчатым фильтром и обратным клапаном. Опустить ее следует на глубину не выше 1 м от поверхности воды.
    • Подключение электрической сети и защитного заземления.

    Внимание! Все водяные электронасосные агрегаты должны иметь защитное заземление или зануление, без которых их эксплуатация недопустима. Подключение их к силовому электрощиту необходимо производить через УЗО и автомат максимального тока.

    Слабые места насосных станций и основные поломки

    Выпускающиеся промышленностью насосные станции, или так называемые самовсасывающие насосы, привлекают:

    • доступной ценой , меньшей, чем при отдельном приобретении всех комплектующих;
    • компактными размерами;
    • удобством установки и обслуживания;
    • готовностью к эксплуатации сразу после приобретения.

    Однако в их использовании имеются и недостатки:

    • Ограниченная 7~8‑ю метрами высота всасывания. Ее можно увеличить на пару метров, расположив агрегат в заглубленном кессоне рядом с колодцем.
    • Необходимость оборудования специального утепленного звукоизолированного помещения.
    • Небольшая емкость гидроаккумулятора 20~50 л.
    • Шум при работе.

    Неисправности насосных станций могут быть вызваны следующими причинами:

    • Внезапное отключение электроэнергии часто сопровождается гидроударом, способным нанести непоправимые повреждения.
    • Загрязненность и низкое качество воды приводят к повышенному износу лопаток центробежного гидронасоса и заиливанию бака.
    • Несоответствие условий эксплуатации техническим параметрам.

    Например, одна из распространенных поломок связана с завышенным водопотреблением, когда частота включения/выключения станции значительно превышает паспортную . Это приводит к разрыву мембраны в баке‑гидроаккумуляторе.

    Станция при этом не может создать требуемое давление в системе и частота включений еще больше увеличивается. Проверяется нажатием ниппеля на обратной стороне бака : если оттуда потекла вода - мембрана требует замены.

    Еще одной распространенной неисправностью является поломка или неправильная регулировка реле давления , которая приводит к непрерывной работе станции без отключений.

    Регулируется реле двумя пружинками разного размера. Большой устанавливают нижний порог, а маленькой - разницу между верхним и нижним.

    Жители городских домов или квартир нечасто задумываются о том, что, подходя к либо в и просто открывая его, они включают в работу отточенную для ее создания столетиями научных открытий, изобретений и инженерных решений огромную и сложную систему добычи водных ресурсов , их доставки и распределения.

    Те же, кому приходится создавать для своего жилища такую систему в миниатюре, по‑настоящему дорожат ценностью этого поистине незаменимого источника жизни - воды.

    Основными параметрами для выбора любого являются:

      создаваемый напор;

      производительность;

      мощность электродвигателя.

    В данной статье мы остановимся на упрощенном расчете напора и производительности.


    Напор, создаваемый насосом должен складываться из трех важных значений:

    1. При определении требуемого напора насоса нужно помнить, что 1 метр напора по вертикали примерно равен 10 метрам напора по горизонтали (на самом деле на данное отношение влияет множество факторов).

    Если в характеристиках насоса написано, что максимальный напор при нулевой производительности достигает H max = 48 метров , то значит, что по вертикали данный насос поднимет воду на высоту 48 метров или при нулевой высоте подъема он сможет доставить воду примерно на 480 метров по горизонтали (но при этом вода будет вытекать слабой струйкой).

    Например, вы устанавливаете насос в подвале дома или гаража, находящемся на 3 метра ниже уровня земли. До входа системы водоснабжения в одноэтажный дом, куда подается вода - 20 метров. Значит, Вам необходим насос с напором свыше 5-ти метров при определенной производительности:

    H max = 3 + 20/10 = 5 метров .

    Но для нормальной работы системы водоснабжения Вам нужен насос с определенными напором и производительностью.

    Вы спросите: «Почему при определенной производительности?»

    Ответ: «Вам нужно, чтобы вода из шланга или крана не капала (а на насосе указан максимальный напор при нулевой производительности, либо наоборот), а вытекала с производительностью, достаточной для удаления воды из емкости. Для бытовых целей производительности насоса хватит, если максимальный напор, создаваемый насосом (указан в характеристиках насоса) превышает расчетный на 3 метра. В данном случае 8 метров. Опять-таки, не стоит забывать, что в ряде случаев необходим запас по напору, определяющему производительность насоса, то есть напор должен быть существенно больше.

    Более точные расчеты напора и производительности насоса в зависимости от сложности системы трубопроводов, дальности перемещения воды и высоты подъема определяется по специальным диаграммам, таблицам или для сложных условий работы системы водоснабжения производятся сложнейшие расчеты, в которых с определенной степенью погрешности учитываются все параметры и характеристики системы.

    2. Давление, рекомендуемое (необходимое) в точке потребления, как правило, для всех потребителей бытового назначения, должно быть от 1,5 до 3,0 бар ( bar ) , что соответствует напору от 15-ти до 30-ти метров H потр = (15 ... 30) м.

    3. Расчетный напор насоса до основных точек потребления (например, до входа системы водоснабжения в одноэтажный дом):

    Н расч = H гео + H потр + H пот

    Где: Н расч - расчетный напор, создаваемый насосом, м ;

    H гео - геодезическая высота подъёма воды (расстояние по вертикали от места установки насоса до наиболее высокорасположенного потребителя), м .

    H потр - напор, который необходимо создать в самой удаленной точке и высоко расположенной точке потребления, м .

    H пот - суммарное гидравлическое сопротивление по всей длине L тр всасывающего и нагнетательного трубопроводов (суммарные потери напора).**

    *Высота всасывания

    Чем выше температура воды, тем меньше высота всасывания, и практически при + 65-ти градусах Цельсия (°С ) забор воды становится невозможен.

    Обычно геометрическая высота всасывания для составляет не более 5-ти, 7-ми метров и лишь для некоторых типов насосов она доходит до 9-ми метров.

    **Точный расчет суммарных гидравлических потерь напора по всей длине L тр трубопроводов и элементах инсталляционной аппаратуры, элементах управляющей автоматики и т.д. крайне сложен – приходится учитывать очень большое количество факторов.

    Для крайне приблизительных и упрощенных расчетов зачастую достаточно принимать, что для горизонтального участка трубопровода длиной 100 метров разница между напором на входе и выходе с учетом потерь напора условно принимаем снижение напора на 10 м, что соответствует падению давления около 1 бар ( bar ) .

    Упрощенный пример расчета на уровне «двух пал ьцев» (за основу взят ).

    а) Приведем пример или задачу:

    Длина трубы 25 метров в высоту (от динамического уровня воды до дальней точки потребления). Какой нам нужен напор насоса, чтобы вода достигла точки потребления?

    Решение очень простое - нам нужен напор, равный высоте от динамического уровня воды до точки потребления , то есть 25 метров!

    Обратите внимание! В задаче указано, что вода должна достигнуть точки потребления, а не литься из трубы фонтаном.

    б) Если Вы хотите понять: «Как найти величину напора, чтобы на выходе в точке потребления вода выходила фонтаном?» - решим следующую задачу.

    Расстояние от уровня воды до точки потребления составляет 35 метров в высоту. Какой нам нужен напор насоса, чтобы вода выходила из трубы фонтаном или как минимум превысила высоту точки потребления? Решение тоже очень простое! Необходимо, чтобы у насоса высота напора была выше 35 метров!

    Задача: Длина трубы по вертикали от уровня воды до точки потребления 35 метров. Какой нам нужен напор насоса, чтобы на выходе трубы (или другими словами в точке потребления) создать напор, равный 30 метрам?

    Решение: Необходимо, чтобы у насоса был напор, равный 65 метрам! Эта цифра получена путем сложения двух данных: 35 м (длина трубы по вертикали от уровня воды до точки потребления) + 30 м (стандартный, рекомендованный в точке потребления напор – детальнее указано выше) = 65 метров .

    4. Потери создаваемого напора - потери напора, снижение давления между входом и выходом элемента конструкции гидросистемы, к которым относятся трубопроводы, арматура, электронасосы, элементы управляющей автоматики и т.д.

    Потери напора, создаваемого насосом при перекачивании жидкости, зависят от:

      материала, из которого изготовлены элементы трубопроводов;

      геометрических характеристик трубопроводов (длины, диаметров, углов изгибов используемых переходников, отводов и т.д.);

      наличия клапанов, фильтров (как грубой, так и тонкой очистки), изгибов, приспособлений и других вспомогательных устройств;

      фактического технического состояния гидросистемы, в том числе степени шероховатости внутренних поверхностей;

      вязкости перекачиваемой жидкости.

    Потери создаваемого напора можно приблизительно рассчитать по таблицам, в которых указываются значения уменьшения напора, выраженного в метрах водяного столба.

    С учетом того, что:

    10 м.в.ст. (10 метров водяного столба) = 1 бар ( bar ) = 100000 Па ( Pa )= 100 кПа ( kPa )

    Нужно при любых расчетах привести все величины к одним единицам измерений.

    Пример расчета потерь создаваемого напора ( h п ) .

    Заметно снизилось (уменьшилось) давление в системе водоснабжения - попробуем найти причину - обоснуем необходимость замены труб, элементов трубопровода или существующего насоса, а затем изменим внутренний диаметр (следовательно, увеличим сечение трубы) и тип материала, из которого изготовлены трубы системы водоснабжения, или существующий насос.

    Исходные данные:

    1) Система водоснабжения была смонтирована из стальных оцинкованных труб с внутренним диаметром d 1 = 25 мм .

    2) Для перекачивания жидкости в системе водоснабжения применяется условный центробежный насос с производительностью Q = 4,0 м 3 /ч .

    3) Общая длина трубопроводов составляет L = 100 м .

    4) Для наглядности и упрощения примера не берём во внимание количество и углы изгибов используемых переходников, отводов - считаем только потери напора по длине прямого трубопровода (что имеет мало общего с реальной жизнью, так как в действительности любая система водоснабжения состоит из всевозможных изгибов, переходников, штуцеров, различных элементов запорной арматуры, в том числе кранов, вентилей; о действительном состоянии внутренних стенок стальных труб после определенного срока мы умышленно умалчиваем!).

    Вопрос:

    На сколько изменится создаваемый напор, если при реконструкции системы водоснабжения взамен демонтированных стальных труб будут использоваться трубы из ПХВ с внутренним диаметром

    d 2 = 38 мм?

    Решение:

    1) По ниже приведенной таблице потерь напора определяем потерю напора при длине L = 100 м трубопровода и производительности Q = 4,0 м 3 /ч для труб из ПХВ с внутренним диаметром d 1 = 25 мм.

    Потери напора составляют h 1 = 21,5 м ( м.в.ст.) , что соответствует уменьшению давления на величину:

    P 1 = 2,15 бар ( bar ).

    2) Внизу таблицы в примечании указано, что полученное значение потерь давления для стальных оцинкованных труб нужно умножить на поправочный коэффициент k = 1,5. В результате получим значение потерь давления:

    h 2 = 21,5 м × 1,5 = 32,25 м ( м.в.ст.) , что примерно соответствует уменьшению давления на величину: ∆ P 2 = 3,23 бар ( bar ). (Это результат на условном трубопроводе длиной 100 метров!)

    3) По таблице потерь для труб из ПХВ диаметром d 2 = 38 мм и длиной L = 100 м при производительности Q = 4,0 м 3 /ч определим потери напора, равные h 3 = 2,9 м.в.ст., что соответствует уменьшению давления 0,29 бар ( bar ).

    4) После замены стальных оцинкованных труб с внутренним диаметром d 1 = 25 мм на трубы из ПХВ с внутренним диаметром d 2 = 38 мм , при одинаковой длине трубопровода L = 100 м и при той же производительности Q = 4,0 м 3 /ч условного насоса (по условию задачи насос не меняли!) получили меньшие потери напора и давления:

    h = h 2 - h 3 = 32,25 - 2,9 = 29,35 м (м.в.ст.) ; или ∆P = ∆P 2 - ∆P 1 = 3,23 - 0,29 = 2,94 бар (bar)

    Вывод: поменяем трубы для системы водоснабжения, а не насос (насос не «виноват»)!

    Таблица расчета потерь напора (в метрах водяного столба) для труб из ПХВ и полипропилена в зависимости от производительности, длины и диаметра трубопровода. (Все числовые значения потерь напора, приведенные в таблице, являются экспериментально установленными, так как не существует простых формул для расчета потерь!)


    Таблица расчета потерь напора (в метрах водяного столба) для стальных труб при перекачивании сточных вод в зависимости от производительности, длины и диаметра трубопровода. (Все числовые значения потерь напора, приведенные в таблице, являются экспериментально установленными, так как не существует простых формул для расчета потерь!)



    Расчет производительности следует производить по двум основным значениям:

    1. Расход в точке потребления.

    2. Потери производительности по длине трубопровода от насоса до точки потребления.

    Что касается расхода потребления воды, то тут примерно есть приблизительно готовый цифровой стандарт.

    Примерный расход воды из потребителей:

      умывальник - 6 л/мин;

      туалет - 4 л/мин;

      посудомоечная машина - 8 л/мин;

      душ - 10 л/мин;

      поливочный кран - 18 л/мин;

      стиральная машина - 10 л/мин;

      бассейн - 15 л/мин;

      полив газонов и цветников требует до 6 л/мин воды на один м 2 , расход при этом зависит также от способа орошения и интенсивности полива;

      сауна или баня потребует около 16 л/мин .

    На практике обычно считается расход из одного открытого крана равен 10 литрам/минуту.

    Возьмем для примера смеситель в ванной. По опыту для комфортного использования смесителя необходимо, чтобы расход воды на выходе примерно равнялся 15 литрам в минуту. Эту величину и возьмем для стандарта по подбору расхода в данной задаче.

    Но ведь у нас не одна точка водоразбора, тогда необходимо рассчитать общий поток для всех точек потребления. Соответственно расход всех точек потребления необходимо суммировать и найти максимальный показатель расхода.

    Предположим, у нас имеется две ванны и кухня. И представим, к примеру, что в первой ванной работает душ, во второй - непосредственно смеситель и стиральная машина, на кухне открыт кран и работает посудомоечная машина.

    Суммируем расходы из всех точек потребления 10 + 15 + 10 + 6 + 8 = 49 литров в минуту - получили наш расход из пяти основных потребителей.

    Можем подбирать необходимую производительность насоса с учетом примерного расхода.

    Важно! При расчете максимальной производительности (объемной подачи) насоса или при установке насоса повышения давления необходимо брать запас не менее (40 … 50) % от суммарного максимально возможного водопотребления.

    Важно! При расчете фактической производительности (объемной подачи) насоса необходимо учитывать, что все потребители в системе водоснабжения никогда не работают одновременно, соответственно клиент может взять поправочный коэффициент (коэффициент запаса по производительности), равным k зап = 0,8 … 0,9 = (80 … 90) % от суммарного максимально возможного водопотребления.