Расчет плиты на упругом основании пример. Описание программы плита. Изучение характеристик грунта

→ Фундаменты


Теории изгиба балок и плит на упругом основании и условия их применимости к расчету гибких фундаментов


Для гибких фундаментов, которые в основном воспринимают изгибающие моменты, образующиеся в результате совместной работы с основанием, предположение о линейном распределении реактивных давлений оказывается неприемлемым, потому что оно зависит от жесткости фундамента и податливости грунтового основания.

Замена реальной эпюры контактных давлений линейно распределенной приводит к существенным погрешностям при определении изгибающих моментов и поперечных сил.

К гибким фундаментам можно отнести ленточные и отдельные железобетонные фундаменты, а также сплошные железобетонные плиты и некоторые типы коробчатых фундаментов.

В зависимости от вида используемого фундамента различают плоскую задачу, когда условия работы поперечного сечения фундамента одинаковы по длине. Например, ленточный фундамент под стену в поперечном сечении имеет одинаковую форму деформации по всей длине.

В условиях пространственной задачи будут находиться ленточный фундамент под колонны, принимаемый в поперечном направлении жестким, и фундаментные плиты различной формы, работающие на изгиб в двух направлениях.

В настоящее время большое распространение при проектировании гибких фундаментов получили теории расчета балок и плит на упругом основании, которые справедливы для линейно деформируемых оснований, причем наибольшее применение получили следующие методы:
1) местных деформаций с постоянным и переменными коэффициентами постели;
2) упругого полупространства;
3) упругого слоя ограниченной толщины на несжимаемом основании;
4) упругого слоя с переменным модулем деформации основания по глубине.

Эти теории исходят из предположения о совместности деформации, фундамента и грунта, т. е. считается, что перемещение фундамента в данной точке контакта равно осадке поверхности грунта.

В методе местных упругих деформаций не учитываются осадки грунта основания за пределами площади загружения, что дает возможность представить такое основание в виде системы несвязанных между собой упругих пружин (рис. 7.1, а). Такие условия работы грунтового основания не подтверждаются экспериментальными данными, которые показывают, что в реальных условиях нагружения оседают не только нагруженная поверхность, но и соседние участки грунта (рис. 7.1, б). Это ограничивает область применения данного метода на практике.

Рис. 7.1. Схемы упругого основания

Метод местных упругих деформаций используют для слабых грунтов основания, для которых можно не учитывать осадки вне зоны приложения внешней нагрузки или в случае незначительной мощности деформируемого грунта, подстилаемого скальным основанием при полупролет рассчитываемого фундамента.

С целью расширения области применения данного метода для расчета гибких фундаментов стали учитывать переменное значение коэффициента постели по длине балки в зависимости от уровня действующего реактивного давления.

Метод упругого полупространства не имеет недостатков, присущих методу местных деформаций, так как он базируется на решениях классической теории упругости, рассматривающей однородные, упругие линейно деформируемые тела.

В соответствии с этими решениями осадки основания имеют место не только на участке под гибким фундаментом, но и за его пределами (рис. 7.1, б).

Однако и метод расчета гибких фундаментов при моделировании грунтового основания упругим полупространством не свободен от некоторых недостатков. В частности, экспериментальными исследованиями было доказано, что осадки за пределами площади загружения затухают значительно быстрее, чем это происходит согласно решению задачи деформирования упругого полупространства. Это связано с тем, что исходные предпосылки теории упругости могут быть применимы к грунтам только с. некоторыми ограничениями, допускающими некоторую идеализацию реальных свойств.

Наблюдения за деформациями оснований гибких фундаментов показали, что основные деформации уплотнения грунта происходят в пределах относительно небольшой глубины. Анализ результатов таких наблюдений показал, что поверхность грунта под возводимыми зданиями и гибкими фундаментами деформируется в соответствии с расчетной схемой линейно деформируемого слоя грунта, подстилаемого несжимаемым основанием.

Основная трудность при использовании этого метода заключается в том, что не всегда точно удается установить мощность сжимаемого слоя.

Дело в том, что на сегодняшний день не существует идеальной модели упругого основания. Одной из наиболее распространенных является модель Фусса-Винклера, согласно которой опорная реакция упругого основания, другими словами - распределенная нагрузка q , действующая на балку, является не равномерно распределенной, а пропорциональной прогибу балки f в рассматриваемой точке:

q = - kf (393.1)

k = k о b (393.2)

k о - коэффициент постели, постоянный для рассматриваемого основания и характеризующий его жесткость, измеряется в кгс/см 3 .

b - ширина балки.

Рисунок 393.1 а) модель балки на сплошном упругом основании, б) реакция основания q на действующую сосредоточенную нагрузку.

Из этого можно сделать как минимум два вывода, неутешительных для человека, собравшегося по-быстрому рассчитать фундамент небольшого домика, к тому же даже основы теоретической механики и теории сопротивления материалов постигшего с трудом:

1. Расчет балки на упругом основании - это статически неопределимая задача, так как уравнения статики позволяют лишь определить суммарное значение нагрузки q (реакции основания). Распределение нагрузки по длине балки будет описываться достаточно сложным уравнением:

q/EI = d 4 f/dx 4 + kf/EI (393.3)

которое мы здесь решать не будем.

2. Помимо всего прочего при расчете таких балок необходимо знать не только коэффициент постели основания, но и жесткость балки ЕI, т.е. все параметры балки - материал, ширина и высота сечения, должны быть известны заранее, между тем при расчете обычных балок определение параметров и является основной задачей.

И что в этом случае делать простому человеку, не обремененному глубокими знаниями сопромата, теорий упругости и прочих наук?

Ответ простой: заказать инженерно-геологические изыскания и проект фундамента в соответствующих организациях. Да, я понимаю, что при этом стоимость дома может увеличиться на несколько тысяч $, но все равно это оптимальное решение в таком случае.

Если же вы, не смотря ни на что, хотите сэкономить на геологоразведке и расчете, т.е. выполнить расчет самостоятельно, то будьте готовы к тому, что придется больше средств потратить на фундамент. Для такого случая я могу предложить следующие расчетные предпосылки:

1. Как правило сплошная фундаментная плита принимается в качестве фундамента в тех случаях, когда несущая способность основания очень низкая. Другими словами грунт - это песок или глина, никак не скальные породы. Для песка, глины и даже гравия коэффициент постели, определенный опытным путем в зависимости от различных факторов (влажности, крупности зерен и др.) k o = 0.5-5 кгс/см 3 . Для скальных пород k o = 100-1500 кг/см 3 . Для бетона и железобетона k o = 800-1500 кгс/см 3 . Как видно из формулы 393.1, чем меньше значение коэффициента постели, тем больше будет прогиб балки при той же нагрузке и параметрах балки. Таким образом мы можем для упрощения дальнейших расчетов предположить, что слабые грунты не влияют на прогиб балки, точнее этим незначительным влиянием можно пренебречь. Другими словами изгибающие моменты, поперечные силы, углы поворотов поперечных сечений и прогибы будут такими же, как и у балки, загруженной распределенной нагрузкой. Результатом такого допущения будет повышенный запас прочности и чем больше будут прочностные характеристики грунтов, тем большим будет запас прочности.

2. Если сосредоточенные нагрузки на балку будут симметричными, то для упрощения расчетов реакцию упругого основания можно принимать равномерно распределенной. Основанием для такого допущения служат следующие факторы:

2.1. Как правило фундамент, рассматриваемый как балка на упругом основании, в малоэтажном строительстве имеет относительно небольшую длину - 10-12 м. При этом нагрузка от стен, рассматриваемая как сосредоточенная, в действительности является равномерно распределенной на участке, равном ширине стен. Кроме того балка имеет некоторую высоту, на первом этапе расчета не учитываемую, а между тем даже сосредоточенная нагрузка, приложенная к верху балки, будет распределяться в теле балки и чем больше высота балки, тем больше площадь распределения. Так например для фундаментной плиты высотой 0.3 м и длиной 12 м, рассматриваемой как балка, на которую опираются три стены - две наружных и одна внутренняя, все толщиной 0.4 м, нагрузки от стен более правильно рассматривать не как сосредоточенные, а как равномерно распределенные на 3 участках длиной 0.4 + 0.3·2 = 1 м. Т.е. нагрузка от стен будет распределена на 25% длины балки, а это не мало.

2.2. Если балка лежащая на сплошном упругом основании имеет относительно небольшую длину и к ней приложено несколько сосредоточенных нагрузок, то реакция основания будет изменяться не от 0 в начале длины балки до некоего максимального значения посредине балки и опять до 0 в конце длины балки (для варианта показанного на рис. 393.1), а от некоторого минимального значения до максимального. И чем больше сосредоточенных нагрузок будет приложено к балке относительно небольшой длины, тем меньше будет разница между минимальным и максимальным значением опорной реакции упругого основания.

Результатом принятого допущения будет опять же некоторый запас прочности. Впрочем в данном случае возможный запас прочности не превысит нескольких процентов. Например, даже для однопролетной балки, на которую действует распределенная нагрузка, равномерно изменяющая от 1.5q в начале балки до 0.5q в середине балки и снова до 1.5q в конце балки (см. статью "Приведение распределенной нагрузки к эквивалентной равномерно распределенной") суммарная нагрузка составит ql, как и для балки, на которую действует равномерно распределенная нагрузка. Между тем максимальный изгибающий момент для такой балки составит

М = ql 2 /(8·2) + ql 2 /24 = 10ql 2 /96 = ql 2 /9.6

Это на 20% меньше, чем для балки, на которую действует равномерно распределенная нагрузка. Для балки, изменение опорной реакции которой описывается достаточно сложным уравнением, особенно если сосредоточенных нагрузок будет много, разница будет еще меньше. Ну и не забываем про п.2.1.

В итоге при использовании данных допущений задача расчета балки на сплошном упругом основании максимально упрощается, особенно при симметричности приложенных нагрузок, несимметричные нагрузки приведут к крену фундамента и этого в любом случае следует избегать. Более того на расчет практически не влияет количество приложенных сосредоточенных нагрузок. Если для балки на шарнирных опорах вне зависимости от их количества должно соблюдаться условие нулевого прогиба на всех опорах, что увеличивает статическую неопределимость балки на количество промежуточных опор, то при расчете балки на упругом основании достаточно рассматривать прогиб, как нулевой, в точках приложения крайних сосредоточенных нагрузок - наружных стен. При этом прогиб под сосредоточенными нагрузками - внутренними стенами определяется согласно общих уравнений. Ну а определить осадку фундамента в точках, где прогиб принят нулевым, можно, воспользовавшись существующими нормативными документами по расчету оснований и фундаментов.

А еще можно достаточно просто подобрать длину консолей балки таким образом, чтобы прогиб и под внутренними стенами был нулевым. Пример того, как можно воспользоваться данными расчетными предпосылками, рассказывается

Цель – ознакомление с методикой создания расчетных схем плоских конструкций в программном комплексе SCAD путем генерации схемы по параметрическим прототипам плит на упругом основании.

2. Теоретическое обоснование

При расчете конструкций на упругом основании возникают проблемы учета распределительных свойств основания, которые игнорируются в простейшем случае винклерова основания (клавишная модель). Большинство реальных грунтов обладают распределительной способностью, когда, в отличие от винклеровой расчетной схемы, в работу вовлекаются не только непосредственно нагруженные части основания. Следовательно, для учета распределительной способности основания необходимо, во-первых, использовать отличные от винклеровой модели основания и, во-вторых, ввести в расчетную схему те части основания, которые расположены за пределом фундаментной конструкции.

Учет части основания, расположенной за областью W, занимаемой самой конструкцией, в SCAD может выполняться с использованием «бесконечных» конечных элементов типа клина или полосы. Эти элементы позволяют смоделировать все окружение области W, если она является выпуклой и многоугольной (рисунок 6.1).

Многоугольность области практически всегда обеспечивается с той или иной степенью точности. Если же область W является невыпуклой или неодносвязной, то она должна быть дополнена до выпуклой области конечными элементами ограниченных размеров. При этом в дополняемых частях толщина плиты принимается равной нулю.



Рисунок 6.1 – Расположение законтурных конечных элементов типа клина и полосы: 1 – плита; 2 – дополнение области W до выпуклой; 3 – элемент-полоса; 4 – элемент-клин

Вычислительный комплекс SCAD предоставляет пользователям процедуры для расчета зданий и сооружений в контакте с основаниями. Эти процедуры состоят в вычислении обобщенных характеристик естественных или искусственных оснований. Обычно проектировщики испытывают определенные затруднения при назначении этих характеристик, особенно для неоднородных слоистых оснований, т.к. получение соответствующих экспериментальных данных требует проведения специальных натурных испытаний, а накопленные табличные данные далеко не всегда адекватны реальным условиям проектирования.

3. Аппаратура и материалы

Компьютерный класс на 25 мест. Программный комплекс SCAD. Нормативно-техническая документация в строительстве.

4. Указания по технике безопасности

К выполнению лабораторных работ допускаются только студенты, прошедшие инструктаж по технике безопасности.

Расстояние от рабочего места до монитора должно быть не менее 1 м. Запрещается трогать руками экран монитора, двигать системный блок в рабочем состоянии.

5. Методика и порядок выполнения работы

Создать Новый проект .

Выбрать Тип схемы.

Сформировать Схему – прямоугольную сетку с переменным (рисунки 6.3 – 6.4) или постоянным шагом (рисунок 6.5), расположенную в плоскости XoY или XoZ. Назначение параметров сетки выполняется в диалоговом окне, изображенном на рисунке 6.2.

Рисунок 6.2 – Диалоговое окно

Тип схемы и ее положение в пространстве назначаются с помощью кнопок, установленных в верхней части окна. При правильном выборе типа схемы конечным элементам автоматически будет назначен тип и его не придется изменять в процессе работы со схемой. Плитам по умолчанию назначается тип 11 .

Рисунок 6.3 – Схема плиты с разным шагом сетки вдоль осей Х и Y

Рисунок 6.4 – Схема плиты с переменным шагом сетки вдоль осей Х и Y

Рисунок 6.5 – Прямоугольная плита с постоянным шагом сетки конечных элементов

При назначении разного шага сетки следует помнить, что наиболее качественное решение будет получено при соотношении сторон четырехузловых конечных элементов, близким к 1. Не рекомендуется назначать соотношение более 1/5. Идеальным в этом смысле является квадрат.

Произвести ввод нагрузок.

Задание вида, направления и значения нагрузок выполняется в диалоговом окне (рисунок 6.6), которое открывается после нажатия кнопки Нагрузки на пластины в инструментальной панели Загружения . В окне следует установить систему координат, в которой задается нагрузка (общая или местная), вид нагрузки (сосредоточенная, распределенная, трапециевидная), ввести значение нагрузки и ее привязку (для распределенных и трапециевидных нагрузок привязка не задается). В диалоговом окне демонстрируется пиктограмма, показывающая положительное направление действия нагрузки.

Рисунок 6.6 – Диалоговое окноЗадание нагрузок на пластинчатые элементы

После нажатия кнопки ОК в диалоговом окне можно приступить к назначению нагрузки на элементы схемы. Перед началом ввода нагрузок желательно включить соответствующий фильтр отображения.

При вводе сосредоточенных нагрузок программа выполняет контроль привязки нагрузок в границах элемента. Если нагрузка не попадает на элемент, выдается сообщение и отмечаются на схеме элементы, в которых допущена ошибка привязки.

Нагрузка на пластинчатые элементы может быть задана и распределенной по линии, соединяющей два указанных пользователем узла элемента. Для задания этой нагрузки необходимо:

– в диалоговом окне назначить вид нагрузки (равномерно распределенная или трапециевидная) и активизировать соответствующую кнопку По линии ;

– установить направление и ввести величину нагрузки;

– нажать кнопку ОК в диалоговом окне;

– выбрать на схеме элементы, к узлам которых привязывается нагрузка;

– нажать кнопку ОК в разделе Загружения ;

– в диалоговом окне (рисунок 6.7) назначить узлы, к которым привязывается нагрузка (узлы обводятся на схеме зеленым и желтым кольцами для первого и второго узлов привязки соответственно);

– нажать кнопку или .

Рисунок 6.7 – Диалоговое окно Назначение узлов привязки нагрузки по линии

В случае использования кнопки Назначить только выбранному элементу нагрузка будет назначена одному элементу (его номер указан в окне). После назначения маркер выбора этого элемента будет погашен, и управление перейдет к следующему по порядку элементу.

Если была нажата кнопка Повторить для всех выбранных элементов , тонагрузка будет автоматически назначена всем выбранным элементам. Естественно, что при этом необходимо быть уверенным, что положение узлов, между которыми задается нагрузка, во всех выбранных элементах соответствует замыслу нагружения.

Выполнить расчет.

Получить различные формы представления результатов расчета.

Произвести печать результатов.

Структура отчета:

– методика и порядок выполнения работы;

– результаты;

– выводы.

Результаты оформляются в виде таблиц и графического материала, в соответствии с полученными данными.

7. Контрольные вопросы и защита работы

В чем заключается особенность расчета конструкций на упругом основании?

Как сформировать прямоугольную сетку с переменным шагом для пластинчатого элемента в ПК SCAD?

Как сформировать прямоугольную сетку с постоянным шагом для пластинчатого элемента в ПК SCAD?

В чем заключается особенность ввода нагрузок для пластинчатого элемента в ПК SCAD?

Задание нагрузок, распределенных по линии, на пластинчатые элементы.

Как произвести учет части основания, расположенной за областью, занимаемой самой конструкцией?

К какому типу относится плита на упругом основании?

Лабораторная работа 7

Пример 9 посвящен статическому расчету и конструированию железобетонной плиты. Цели примера состоят в следующем:

продемонстрировать процедуру построения расчетной схемы плиты;

показать технику задания нагрузок и составления РСУ;

показать процедуру подбора арматуры.

Рассчитывается железобетонная плита размером 3х6м, толщиной 150мм. Короткая сторона плиты оперта по всей длине, противоположная – оперта своими концами на колонны. Длинные стороны плиты – свободны. Требуется выполнить статический расчет, составить таблицу РСУ и подобрать арматуру плиты.

Заданы нагрузки:

загружение 1 – собственный вес;

загружение 2 – сосредоточенные нагрузки Р = 1тс , приложенные по схеме рис. 1.13, заг.2;

загружение 3 – сосредоточенные нагрузки Р = 1тс , приложенные по схеме рис. 1.13, заг.3.

Расчет производится для сетки 6 х 12.

Рис. 1.13. Расчетная схема плиты

«ЛИРА» ПРИМЕРЫ

http://www.lira.com.ua

Этапы и операции

Ваши действия

комментарии

9.1. Создание

диалоговом

«Признак

задайте имя задачи: «Пример9» и признак

схемы: «3».

9.2.Задание геометрии

В диалоговом окне «Создание плоских

фрагментов и сетей» активизируйте

закладку «Генерация плиты», затем

задайте шаг КЭ вдоль первой и второй

9.2.1.Генерация

Шаг вдоль первой оси:

Шаг вдоль второй оси:

После этого щелкните по кнопке

Применить.

9.3.Задание граничных условий

Выведите на экран номера узлов.

Выделите узлы опирания № 1, 7, 85 – 91.

9.3.3.Назначение

активизируйте

закладку

«Назначить

граничных условий

связи» и отметьте направления, по

в выделенных узлах

запрещены

перемещения

(Z) и щелкните по кнопке Применить.

9.4.Задание жесткостных параметров элементов плиты

9.4.1.Формирование

диалоговом

«Жесткости

элементов» сформируйте список типов

типов жесткости

жесткости.

9.4.1.1.Выбор

Щелкните по кнопке Добавить и, выбрав

закладку численного описания жесткости,

«Пластины»

активизируйте сечение «Пластины».

В диалоговом окне «Задание жесткости

9.4.1.2.Задание

для пластин» задайте параметры сечения:

Модуль упругости – Е = 3е6 т/м2 ;

параметров сечения

Коэф. Пуассона – V = 0.2;

«Пластины»

Толщина плиты – Н = 15 см;

Удельный вес материала – Ro = 2.75 т/м2 .

9.4.2.Назначение жесткостей

9.4.2.1.Назначение

Выделите

жесткость

текущего

списка и щелкните по кнопке Установить

жесткости

как текущий тип.

«1.Пластина Н 15»

Выделите все элементы схемы.

Назначьте выделенным элементам текущий тип жесткости.

http://www.lira.com.ua

«ЛИРА» ПРИМЕРЫ

Этапы и операции

Ваши действия

комментарии

9.5.Задание нагрузок

9.5.1.Задание

Выполните

Нагрузки

Элементы

нагрузки

автоматически

элементы

Добавить собственный вес.

загружаются нагрузкой

собственного веса

собственного веса.

9.5.2.Смена

диалоговом

«Активное

текущего

загружение» задайте номер загружения 2.

загружения

Выделите узлы № 18, 46, 74.

активизируйте закладку «Нагрузки в

узлах». Затем радио-кнопками укажите

координат

«Глобальная»,

9.5.4.Задание

направление – вдоль оси «Z». Щелчком по

нагрузки в

кнопке сосредоточенной

силы вызовите

выделенных узлах

диалоговое окно «Параметры нагрузки».

В этом окне введите значение P = 1 тс и

подтвердите ввод. После этого в

диалоговом окне «Задание нагрузок»

щелкните по кнопке Применить.

9.5.5.Смена

диалоговом

«Активное

текущего

загружение» задайте номер загружения 3.

загружения

Выведите на экран номера элементов расчетной схемы.

В диалоговом окне «Задание нагрузок»

активизируйте закладку «Нагрузки на

пластины».

радио-кнопками

координат

«Глобальная», направление – вдоль оси

9.5.7.Задание

«Z». Щелчком по кнопке сосредоточенной

вызовите

диалоговое

нагрузки

«Параметры

нагрузки». В

выделенным

окне введите параметры:

элементам

P = 1 тс;

А = 0.25 м;

В = 0.25 м и подтвердите ввод. После

этого в диалоговом окне «Задание

нагрузок»

щелкните

Применить.

В диалоговом окне «Расчетные сочетания

9.6. Генерация

усилий» задайте виды загружений:

Первое – Постоянное (0);

таблицы РСУ

Второе – Временное длит. (1);

Третье – Временное длит. (1).

Запуск задачи на расчет и переход в режим визуализации результатов расчета осуществляется аналогично предыдущим примерам.

http://www.lira.com.ua

Этапы и операции

Ваши действия

комментарии

9.7. Вывод на экран

изополей

перемещений

направлению Z

9.8. Вывод на экран

напряжений Мх

9.9. Запуск

Выполните команды Windows: Пуск h

Программы h Lira 9.0 h ЛирАрм.

В диалоговом окне системы ЛИР-АРМ

9.10. Импорт

«Открыть»

выделите

расчетной схемы

«пример9#00.пример9» и щелкните по

кнопке Открыть.

9.11.Задание и выбор материала

В диалоговом окне «Материалы» отметьте

радио-кнопку Тип и щелкните по кнопке

9.11.1.Задание

Добавить.

выводится

Остальные

диалоговое окно «Общие характеристики

диалогового окна «Общие

армирования», в котором задайте модуль

характеристики

характеристик

армирования –

плита и

щелкните

армирования» остаются

армирования

кнопке Применить.

диалоговом

«Материалы»

приняты по умолчанию.

щелкните

Назначить

9.11.2.Задание

В диалоговом окне «Материалы»

операцией

активизируйте

радио-кнопку

характеристик

щелкните

Добавить

умолчанию

принимается

бетон класса В25.

умолчание и Назначить текущим.

9.11.3.Задание

В этом же окне активизируйте радио-

операцией

кнопку Арматура и щелкните по кнопкам

характеристик

Добавить

умолчание

Назначить

умолчанию

принимается

арматуры

арматура класса А-III.

9.12.Назначение материала

9.12.1.Выделение

Выделите все элементы схемы.

элементов рамы

9.12.2.Назначение

Также можно назначить

диалоговом

«Материалы»

материал

используя

материала

щелкните по кнопке Назначить.

элементам рамы

панели инструментов).

9.13. Расчет

армирования

9.14. Прсмотр

нижней арматуры в

пластинах

направлению оси X

Этапы и операции

Ваши действия

комментарии

9.16. Просмотр

результатов

армирования

2.14. Просмотр

результатов

армирования в виде

HTML таблиц

1.11.Исследование напряженно-деформированного состояния конструкций, работающих совместно с основанием

Все конечные элементы в ПК ЛИРА воспринимают упругое основание в соответствии с моделью Пастернака. Однако чаще всего используют модель основания Винклера.

Механические свойства модели Винклера характеризуются коэффициентом жесткости (постели) C1 . По физическому смыслу коэффициент жесткости есть усилие, которое необходимо приложить к 1 м2 поверхности основания, чтобы последнее осело на 1 м. Размерность C1 - тс/м3 (кН/м3 ).

Для реализации модели Винклера используются КЭ № 51.

Для нелинейной задачи системы с односторонними связями в программном комплексе используется КЭ № 261. Этот элемент моделирует односторонние дискретные связи основания Винклера и позволяет учесть эффекты отрыва конструкции от основания.

Этапы и операции

Ваши действия

комментарии

Сохраните

под новым

«пример10».

10.2.Удаление наложенных граничных условий

Выделите узлы расчетной схемы.

В диалоговом окне «Связи в узлах»

10.2.2.Удаление

активизируйте закладку «Удалить связи»

и отметьте направления, по которым

граничных условий

удаляете закрепления (Z) и щелкните по

кнопке Применить.

10.3. Задание

диалоговом

«Жесткости

элементов»

щелкните

характеристик

Изменить и в новом окне «Задание

упругого основания

жесткости

для пластин»

введите коэф.

С1 = 1000 тс/м3 .

Запустите задачу на расчет, перейдите в

режим визуализации результатов расчета

и выведите на экран перемещения и

напряжения в пластинах.

1.11.2. Плита на упругом основании со связями конечной жесткости. Пример 11

Главной целью этого примера есть демонстрация техники применения конечного элемента № 51, моделирующего основание Винклера связями конечной жесткости.

Здесь используются исходные данные примера 9 (см. рис. 1.13).

Этапы и операции

Ваши действия

комментарии

Сохраните задачу под новым именем:

«пример11».

наложенные связи

аналогично

примеру 10.

11.3.Задание связей конечной жесткости

11.3.1. Выделите все узлы схемы

11.4.Задание жесткостных па раметров для КЭ № 51

В диалоговом окне «Жесткости

11.4.1.Выбор

элементов»

щелкните

сечения «КЭ

Добавить и, выбрав закладку численного

численное»

Этапы и операции

Ваши действия