Почему автомобильные генераторы вырабатывают переменный ток? Постоянный ток Энергия из тепла человека

Генерирование собственного электричества – лучшее, что вы можете сделать в борьбе за энергонезависимость. Это электричество вы можете использовать чтобы открывать ворота или гараж, включать наружное освещение, продавать в сеть и уменьшить свои расходы, заряжать автомобиль или даже полностью отключиться от общей сети. В этой статье описаны несколько отличных идей как этого добиться.

Шаги

Часть 1

Солнечная энергия

    Узнайте о солнечных панелях. Солнечные панели это общераспространенное решение с большим количеством преимуществ. Они работают во многих частях света и модульный вариант может быть расширен, чтобы соответствовать вашим потребностям. Существует много хорошо проработанных продуктов.

    • Панели должны быть направлены на юг к солнечному свету (на север в южном полушарии, вверх вблизи экватора). Угол наклона следует установить в зависимости от широты, на которой вы находитесь. Вы можете использовать панели в районах, которые солнечны большую часть года, а также в условиях сплошной облачности.
    • Фиксированные опоры можно устанавливать на отдельной структуре (в которой можно разместить аккумуляторы и контроллер заряда) или на существующей крыше. Их просто установить и обслуживать, если они расположены у земли и у них нет движущихся частей. Следящие опоры поворачиваются вслед за солнцем и более эффективны, но могут стоить дороже, чем просто добавить еще пару панелей на фиксированных опорах, чтобы компенсировать разницу. Это хитроумные механические приспособления, которые легко сломать и у них есть движущие части, которые изнашиваются со временем.
    • Только потому, что заявленная мощность солнечной панели 100 Ватт, это не означает, что она способна вырабатывать ее все время. Мощность будет определена тем как вы установите панель, погодой, или тем что сейчас зима и солнце не поднимается высоко надо горизонтом.
  1. Начните с малого. Купите одну или две солнечные панели для начала. Их можно устанавливать поэтапно, так что вам не надо с самого начала тратить огромные суммы. Большинство систем для крыш могут быть расширены – вам надо обратить на это внимание при покупке. Купите систему, которая может расти вместе с вашими потребностями.

    Разберитесь с обслуживанием вашей системы. Как и все остальное, если вы не будете о ней заботиться, она развалится. Определитесь, как долго она должна прослужить. Небольшая экономия сейчас может стоить вам гораздо больше в будущем. Инвестируйте в заботу о вашей системе и она позаботится о вас.

    • Постарайтесь составить бюджет расходов, связанных с поддержанием работоспособности системы в течение длительного периода времени. Вам следует избегать ситуаций, которые оставят вас без средств посреди проекта.
  2. Выберите тип системы. Решите, хотите ли вы отдельностоящее решение для выработки электричества или решение, которое можно подсоединить к распределительной системе. Отдельностоящим системам нет равных в автономности, вам известен источник каждого использованного ватта. Системы, которые можно подключать в общую сеть дают вам стабильность и избыточность, а также возможность перепродавать электричество поставляющей компании. Если ваша система подключена в общую сеть, а вы следите за расходом энергии так, как будто у вас автономная система, то у вас даже получится зарабатывать небольшой дополнительный доход.

    • Свяжитесь с вашей энергопоставляющей компанией и спросите о системах, которые можно подключать в общую сеть. Возможно, они смогут предоставить льготы и подскажут, кого следует нанять, чтобы разместить ваш надежный источник электричества.

Часть 2

Использование альтернативных систем
  1. Узнайте о ветряных турбинах. Это тоже отличное решение для многих районов. Иногда оно может быть даже более экономически эффективным, чем солнечная энергия.

    • Вы можете использовать самодельную ветряную турбину, сделанную из старого автомобильного генератора при помощи чертежей доступных в Сети. Хоть это и не рекомендуется делать новичкам, но достижение приемлемых результатов возможно. Существуют недорогие готовые решения.
    • У ветровой энергии, однако, есть несколько недостатков. Возможно, вам придется установить турбины слишком высоко, чтобы они работали эффективно, и ваши соседи посчитают их неприятной частью пейзажа. Птицы могут их совсем не замечать ….. до момента, когда будет слишком поздно.
    • Для ветровой энергии нужен более-менее постоянный ветер. Открытые, пустые пространства подходят лучше всего, потому что на них находится минимальное количество препятствий для ветра. Ветровая энергия часто эффективна при использовании в качестве дополнения к системам солнечной и гидро энергии.
    • Изучите гидроэлектрические минигенераторы. Существуют различные виды технических решений от самодельного пропеллера, подсоединенного к автомобильному генератору, до запутанных инженерных систем повышенной надежности. Если у вас есть выход к воде, это может стать эффективным и автономным решением.

      Попробуйте комбинированную систему. Вы всегда можете объединить любые из этих систем, чтобы получать энергию круглый год и в достаточном количестве для вашего дома.

      Подумайте об автономном генераторе. Если распределяющей сети нет или вы хотите запасной источник на случай отключения/катастрофы, вам может пригодиться генератор. Они могут работать на разных видах топлива и доступны разных размеров и мощности.

      • Многие генераторы очень медленно реагируют на изменения в нагрузке (подключение мощных приборов заставляет питание колебаться).
        • Маленькие, повсеместно доступные в строительных магазинах генераторы предназначены для нечастого использования в чрезвычайных ситуациях. Если их использовать в качестве основного источника энергии они чаще всего ломаются.
      • Большие бытовые генераторы стоят дорого. Они работают на бензине, дизельном топливе или сжиженном газе и обычно оснащены системой автоматического старта, которая запускает их в момент прекращения подачи электричества из распределительной сети. Если вы решили установить такой, убедитесь, что у вас работает дипломированный электрик и строительные нормы соблюдаются. При неправильной установке он может убить электриков, которые отключают основное электропитание не зная, что есть еще и аварийный генератор.
      • Генераторы для автодач, трейлеров или лодок небольшого размера, тихие, предназначены для продолжительного использования и гораздо более доступны. Они работают на бензине, дизельном топливе или сжиженном газе и могут работать по нескольку часов в день в течение нескольких лет.
    • Избегайте теплоэлектрогенераторов. Теплоэлектрогенераторы (ТЭГ) или совмещенные генераторы, которые производят электроэнергию из тепла – обычно пара – старомодны и неэффективны. Несмотря на то, что у них есть много поклонников, вам следует воздержаться от их использования.

Часть 3

Делаем верный выбор

    Пройдитесь по магазинам. Множество производителей предлагают различные товары и услуги на рынке экологически чистой электроэнергии и некоторые из их решений подходят вам лучше, чем другие.

    Исследуйте. Если вы заинтересованы в конкретном товаре проведите сравнение цен перед тем как будете говорит с поставщиком.

    Спросите совета у профессионала. Найдите кого-то кому вы доверяете, чтобы помог принять вам решение. Есть поставщики, которым интересен ваш проект, и есть которым не интересен. Найдите в Интернете сообщество домашних мастеров или ему подобное чтобы получить совет, который исходит от кого-то, кто не собирается вам ничего продавать.

    Разузнайте о льготах. Не забудьте узнать о местных, региональных и федеральных программах льгот, когда будете делать свои покупки. Существует много программ по которым ваши затраты по монтажу могут быть просубсидированы, либо же вам предоставят налоговые льготы за переход на экологически чистую электроэнергию.

    Вам нужна квалифицированная помощь. Не каждый подрядчик или рабочий квалифицирован для установки таких систем. Работайте только с опытными поставщиками и монтажниками, у которых есть разрешение на работу с вашим оборудованием.

Часть 4

Готовимся к худшему

    Узнайте о страховым покрытии для более крупных объектов. Ваш текущий полис на домовладение может не покрывать разрушение вашей системы при катастрофе, что может очень сильно вас разочаровать.

    Познакомьтесь со специалистом по обслуживанию систем альтернативной энергии. Если уж вы за это взялись, не стесняйтесь просить о помощи.

    Спланируйте запасной источник энергии. Естественные источники, которые используют автономные энергетические системы не всегда надежны. Солнце светит не всегда, как и ветер не всегда дует, вода тоже не всегда течет.

    • Использование системы подключенной в распределительную сеть - самое недорогое решение для большинства людей, особенно для тех, кто уже является клиентом энергопоставляющих компаний. Они устанавливают один тип системы (например, солнечные панели) и подключают ее к распределительной сети. Когда поступление электроэнергии недостаточно, сеть покрывает недостаток, а когда электроэнергии в избытке – сеть выкупает излишек. Крупные системы могут постоянно крутить счетчик электроэнергии в обратную сторону.
    • Если распределительной сети по близости нет, может быть гораздо дороже подключиться к ней (или даже подсоединить пристройку к дому), чем производить и хранить свою собственную электроэнергию.
  1. Узнайте о хранении электричества. Распространенное решение для автономного хранения электричества это свинцово-кислотные аккумуляторы глубокой зарядки. Каждый вид аккумуляторов нуждается в разных циклах зарядки, поэтому убедитесь, что ваш контроллер заряда может работать с вашим типом аккумуляторов и правильно для этого настроен.

Часть 5

Выбор и использование аккумуляторов

    Используйте аккумуляторы одного типа. Аккумуляторы нельзя мешать между собой и обычно новые аккумуляторы не очень хорошо работают, когда смешаны с более старыми.

    Подсчитайте сколько аккумуляторов вам понадобится. Их емкость исчисляется в ампер-часах. Для грубого подсчета киловатт-часов умножьте ампер-часы на количество вольт (12 или 24 вольта) и разделите на 1000. Чтобы получить ампер-часы из киловатт-часов просто умножьте на 1000 и разделите на 12. Если ваше дневное потребление будет 1 киловатт-час вам понадобится примерно 83 ампера емкости 12-вольтового хранилища, но вам надо будет 5-кратное количество от рассчитанного (считая, что вы не хотите разряжать аккумуляторы более чем на 20%) или примерно 400 ампер-часов, чтобы получить требуемую мощностью.

  1. Выберите тип аккумулятора. Существует много видов аккумуляторов и очень важно выбрать наиболее подходящий. Понимание что вам пойдет, а что нет, очень важно для снабжения вашего дома электроэнергией.

    • Самые распространенные это кислотные аккумуляторы. Их необходимо обслуживать (верхушки снимаются, чтобы можно было долить дистиллированной воды) и время от времени они нуждаются в «компенсационной» перезарядке, чтобы убрать серу с пластин и поддерживать банки в более-менее одинаковом состоянии. У некоторых высококачественных аккумуляторов банки в 2,2 вольта можно заменять независимо от других, если они испортились. «Необслуживаемые» аккумуляторы теряют жидкость по мере выпускания газа и, в конце концов, высыхают.
    • Гелиевые аккумуляторы не надо обслуживать и они не прощают проблем с зарядкой. Зарядное устройство, предназначенное для кислотных аккумуляторов, испарит гель с пластин и между электролитом и пластинами образуются зазоры. Как только одна банка пришла в состояние перезаряда (из-за неравномерного износа), весь аккумулятор становится негодным. Такие аккумуляторы хороши как часть небольшой системы, но не подходят для крупных систем.
    • Аккумуляторы с абсорбированным электролитом более дорогие, чем аккумуляторы любого другого типа, и не нуждаются в обслуживании. Они сохраняют работоспособность на протяжении долгого времени при условии, что их правильно заряжают и не позволяют слишком сильно разряжаться. Кроме того, они не могут дать протечку – даже если вы разобьете их кувалдой (мы правда не уверены, зачем вам это вообще может понадобиться). При перезаряде также они выпускают газ.
    • Автомобильные аккумуляторы – они для автомобилей. Автомобильные аккумуляторы не подходят для случаев, в которых требуются аккумуляторы глубокой зарядки.
    • Лодочные аккумуляторы это гибрид стартового аккумулятора и аккумулятора глубокой зарядки. В качестве компромиссного решения они хорошо подходят для лодок, но не очень хороши в качестве источника электроэнергии для дома.
  2. Советы
    • В любом месте, где энергетические системы не подведены прямо к крыльцу, стоимость подключения нового строения к распределительной сети может превысить стоимость установки собственной системы генерирования электроэнергии.
    • Аккумулятор глубокого заряда не работают хорошо, если они часто разряжаются более чем на 20% своей емкости. Если такое происходит, их срок службы существенно уменьшится. Если вы большую часть времени разряжаете их не сильно или сильно, но не часто, их срок службы будет продлен.
    • Существует много возможностей профинансировать установку системы, а также налоговых/эксплуатационных льгот для некоторых источников электроэнергии.
    • Возможно объединиться с соседями по удаленному району и совместно оплатить систему генерации электроэнергии. О чем бы ни договорились заинтересованные стороны, в будущем это может стать источником некоторых сложностей. Возможно, придется создать кооператив домовладельцев или подобную организацию.
    • Если это не оправдывает себя в рублях и копейках оправдает ли это себя в:
      • Срочной необходимости (отсутствие систем обеспечения электроэнергией)?
      • Внутреннее спокойствие?
      • Кабель не проходит по вашей собственности?
      • Как повод для хвастовства?
    • В Сети есть много статей с большим количеством хорошей информации, но большая часть из нее сосредоточена на продаже оборудования определенного поставщика.
    • Если у вас есть доступ к проточной воде, микро-гидроэлектростанция возможно подойдет лучше, чем комбинированное решение из солнечных панелей и ветровых турбин.
    • Сборка элементов системы не является сложной задачей при условии, что вы умеете обращаться с электричеством.

    Предупреждения

    • Если вы не знакомы с теорией электричества и у вас нет познаний в технике безопасности, считайте что это список вещей, которые вам надо узнать или передать другому человеку для выполнения.
      • Вы можете нанести непоправимый урон собственности (сжечь проводку, повредить крышу или сжечь дом дотла)
      • Вы можете причинить телесные повреждения или даже смерть (удар электрическим током, падение с крыши, падение незакрепленных деталей на людей)
      • Аккумуляторы при коротком замыкании или в невентилируемом помещении могут стать причиной взрыва.
      • Разбрызганная аккумуляторная кислота может привести к серьезным ожогам и слепоте.
      • Даже постоянный ток такой мощности может остановить ваше сердце или причинить серьезные ожоги, если пройдет по украшениям надетым на вас.
      • Если дополнительный источник электропитания подключен через панель предохранителей (инвертор или генератор), убедитесь что есть очень заметный знак, предупреждающий об этом обслуживающий персонал энергопоставляющей компании. В противном случае они могут отключить основной ввод электричества и, считая, что цепь обесточена, быть убитыми электрическим током от резервного источника.
      • Вот это интересно. Вон те невинные крутящиеся колесики и красные панельки могут вас убить совсем насмерть.
    • Что бы вы ни устанавливали, убедитесь, что страховка на домовладение покроет это. Не надо надеяться на авось.
    • Сверьтесь с местными строительными нормами и правилами (СНиП).
      • Некоторые люди на самом деле считают солнечные панели «не привлекательными».
      • Некоторые люди считают ветровые турбины «шумными» И «не привлекательными».
      • Если у вас не прав на использование водных ресурсов для вас могут сделать исключение в этом случае.
    • Существую системы «все-в-одном», но обычно они или невелики, или дорогие, или и то и другое.

Электрическим генератором называется машина или установка, предназначенная для преобразования энергии неэлектрической — в электрическую: механической — в электрическую, химической — в электрическую, тепловой — в электрическую и т. д. Сегодня в основном, произнося слово «генератор», мы имеем ввиду преобразователь механической энергии - в электрическую.

Это может быть дизельный или бензиновый переносной генератор, генератор атомной электростанции, автомобильный генератор, самодельный генератор из асинхронного электродвигателя, или тихоходный генератор для маломощного ветряка. В конце статьи мы рассмотрим в качестве примера два наиболее распространенных генератора, но сначала поговорим о принципах их работы.

Так или иначе, с физической точки зрения принцип работы каждого из механических генераторов — один и тот же: , когда при пересечении линиями магнитного поля проводника - в этом проводнике возникает ЭДС индукции. Источниками силы, приводящей к взаимному перемещению проводника и магнитного поля, могут быть различные процессы, однако в результате от генератора всегда нужно получить ЭДС и ток для питания нагрузки.

Принцип работы электрического генератора — Закон Фарадея

Принцип работы электрического генератора был открыт в далеком 1831 году английским физиком Майклом Фарадеем. Позже этот принцип назвали законом Фарадея. Он заключается в том, что при пересечении проводником перпендикулярно магнитного поля, на концах этого проводника возникает разность потенциалов.

Первый генератор был построен самим Фарадеем согласно открытому им принципу, это был «диск Фарадея» - униполярный генератор, в котором медный диск вращался между полюсами подковообразного магнита. Устройство давало значительный ток при незначительном напряжении.

Позже было установлено, что отдельные изолированные проводники в генераторах проявляют себя гораздо эффективнее с практической точки зрения, чем сплошной проводящий диск. И в современных генераторах применяются теперь именно проволочные обмотки статора (в простейшем демонстрационном случае — виток из проволоки).

Генератор переменного тока

В подавляющем своем большинстве современные генераторы — это синхронные генераторы переменного тока. У них на статоре располагается якорная обмотка, от которой и отводится генерируемая электрическая энергия. На роторе располагается обмотка возбуждения, на которую через пару контактных колец подается постоянный ток, чтобы получить вращающееся магнитное поле от вращающегося ротора.

За счет явления электромагнитной индукции, при вращении ротора от внешнего привода (например от ДВС), его магнитный поток пересекает поочередно каждую из фаз обмотки статора, и таким образом наводит в них ЭДС.

Чаще всего фаз три, они смещены физически на якоре друг относительно друга на 120 градусов, так получается трехфазный синусоидальный ток. Фазы можно соединить по схеме «звезда» либо «треугольник», чтобы получить .

Частота синусоидальной ЭДС f пропорциональна частоте вращения ротора: f = np/60, где — p - число пар магнитных плюсов ротора, n - количество оборотов ротора в минуту. Обычно максимальная скорость вращения ротора — 3000 оборотов в минуту. Если подключить к обмоткам статора такого синхронного генератора трехфазный выпрямитель, то получится генератор постоянного тока (так работают, кстати, все автомобильные генераторы).

Трехмашинный синхронный генератор

Конечно, у классического синхронного генератора есть один серьезный минус — на роторе располагаются контактные кольца и щетки, прилегающие к ним. Щетки искрят и изнашиваются из-за трения и электрической эрозии. Во взрывоопасной среде это не допустимо. Поэтому в авиации и в дизель-генераторах более распространены бесконтактные синхронные генераторы, в частности — трехмашинные.

У трехмашинных устройств в одном корпусе установлены три машины: предвозбудитель, возбудитель и генератор — на общем валу. Предвозбудитель — это синхронный генератор, он возбуждается от постоянных магнитов на валу, генерируемое им напряжение подается на обмотку статора возбудителя.

Статор возбудителя действует на обмотку на роторе, соединенную с закрепленным на ней трехфазным выпрямителем, от которого и питается основная обмотка возбуждения генератора. Генератор генерирует в своем статоре ток.

Газовые, дизельные и бензиновые переносные генераторы

Сегодня очень распространены в домашних хозяйствах , которые в качестве приводных двигателей используют ДВС — двигатель внутреннего сгорания, передающий механическое вращение на ротор генератора.

У генераторов на жидком топливе имеются топливные баки, газовым генераторам — необходимо подавать топливо через трубопровод, чтобы затем газ был подан в карбюратор, где превратится в составную часть топливной смеси.

Во всех случаях топливная смесь сжигается в поршневой системе, приводя во вращение коленвал. Это похоже на работу автомобильного двигателя. Коленвал вращает ротор бесконтактного синхронного генератора (альтернатора).

Андрей Повный

Задумывались ли вы когда-нибудь о том, что питает все ? За счет чего заводится мотор, горят лампочки на приборной панели, движутся стрелки и работают бортовые компьютеры? Откуда берется электричество на борту? Конечно, их вырабатывает генератор и аккумулирует химический накопитель энергии многоразового действия - электрический аккумулятор. Это знают все. Скорее всего, вы также в курсе, что аккумуляторная батарея вырабатывает постоянный ток, который используется в любом автомобиле для запитывания приборов. Однако во всей этой стройной теории, проверенной практикой, присутствует одно странное звено, не желающее поддаваться логике, - генератор вырабатывает ток переменный, тогда как все механизмы на борту машины потребляют ток постоянный. Это не кажется вам странным? Почему так происходит?

На самом деле это интересный вопрос, потому что в этой истории на первый взгляд нет никакого смысла. Если все потребители электричества в вашем автомобиле работают на 12 вольтах постоянного тока, почему автопроизводители больше не используют генераторы, которые производят постоянный ток? Ведь раньше так и делали. Почему необходимо сперва сгенерировать переменный ток, а затем преобразовывать его в постоянное электричество?

Задавшись такого рода вопросами, мы начали докапываться до истины. Ведь есть же в этом какая-то тайная причина. И вот что мы выяснили.


Во-первых, давайте проясним, что мы подразумеваем под переменным и постоянным током. Автомобили используют постоянный ток , или прямой ток, как его еще называют. В названии скрыта суть феномена. Это тип электричества, который производится батареями, он течет в одном постоянном направлении. Этот же тип электричества производился генераторами, которые ставились на первые автомобили с начала 1900-х годов до 60-х годов прошлого века. На старушках и ГАЗ-69 ставились именно генераторы постоянного тока.

Другой вид электричества - переменный ток - назван так из-за того, что он периодически обращает течение по направлению, а также изменяется по величине, сохраняя свое направление в электрической цепи неизменным. Доступ к этому типу электричества можно получить в любой розетке обычной квартиры по всему миру. Мы используем его для питания электроприборов в частных домах, зданиях, огни больших городов также дают свет благодаря переменному току, потому что его легче передавать на большие расстояния.

Большая часть электроники, в том числе почти вся в вашем автомобиле, использует постоянный ток, преобразуя переменный ток в постоянный для выполнения полезной работы. В бытовых приборах установлены так называемые блоки питания, в которых происходит конвертация одного вида энергии в другой. Побочным результатом работы преобразования является немного тепла на выходе. Чем сложнее бытовая утварь, к примеру компьютер или Smart TV, тем сложнее цепочка преобразований. В некоторых случаях переменный ток частично не изменяется, а лишь корректируется его частота. Поэтому очень важно при замене вышедшего из строя блока питания заменять его на оригинальный, требуемого типа. Иначе технике наступит очень быстрый конец.

Но что-то мы отошли от главных вопросов, поставленных на повестку дня сегодня.

Итак, зачем в автомобилях вырабатывать «неправильный» вид электричества?


В общем, ответ очень прост: таков принцип работы генератора переменного тока. Наиболее высокий КПД при переводе механической энергии вращения двигателя в электрическую энергию происходит именно по такому принципу. Но есть нюансы.

Кратко принцип работы автомобильного генератора таков:


При включении зажигания на обмотку возбуждения подается напряжение через блок щеток и контактные кольца.

Инициируется появление магнитного поля.

Магнитное поле воздействует на обмотки статора, что приводит к появлению электрического переменного тока.

Завершающая стадия «готовки» правильного тока - регулятор напряжения.

После всего процесса часть электричества запитывает электропотребители, часть идет на подзарядку аккумулятора, некоторая часть уходит обратно на щетки альтернатора (так когда-то называли генератор переменного тока) для самовозбуждения генератора.

Выше был описан принцип работы современного генератора переменного тока, но так было не всегда. Ранние автомобили с двигателями внутреннего сгорания использовали магнето - простейшее приспособление для преобразования механической энергии в электрическую (переменного тока). Внешне, да и внутренне, эти машинки были даже схожи с более поздними генераторами, но использовались на очень простых автомобильных электрических системах без батарей. Все было просто и безотказно. Не зря некоторые сохранившиеся до наших времен 90-летние автомобили заводятся до сих пор.

Индукторы (второе название магнето) впервые были разработаны человеком с неподражаемым именем - Ипполит Пикси.

На данный момент мы с вами выяснили, что тип вырабатываемого генераторами тока зависит от продуктивности перевода механической энергии в электрическую, но также немаловажную роль во всей этой истории сыграло снижение массы и габаритов устройства по сравнению с аналогичными по мощности устройствами-производителями постоянного тока. Разница в весе и габаритах оказалась почти в три раза! Но есть еще один секрет, почему автомобильные генераторы сегодня вырабатывают переменный ток. Вкратце это более передовой эволюционный путь развития генераторов постоянного тока, которых, признаться честно, по сути, и не существовало в чистом виде.

Историческая справка:

Более того, генераторы постоянного тока на самом деле также производили переменный ток, когда якорь (подвижная часть) вращался внутри статора (внешний «корпус», который имеет постоянное магнитное поле). Разве что частота тока была иной и «сгладить» ее в постоянный ток можно было проще - при помощи коммутатора.

Коммутатором тогда называлось механическое приспособление с вращающимся цилиндром, поделенным на сегменты с щетками для создания электрического контакта.

Система работала, но была неидеальна. В ней было множество механических частей, контактные щетки быстро изнашивались, и общая надежность системы была так себе. Тем не менее это был лучший способ получить постоянный ток, который был нужен вам для зарядки аккумулятора и системы запуска автомобиля.

Так было до конца 1950-х годов, когда начала появляться твердотельная электроника, ставшая решением проблемы преобразования переменного тока в постоянный посредством кремниевых диодных выпрямителей.


Эти выпрямители тока (иногда называемые диодным мостом) показали себя с гораздо лучшей стороны в качестве преобразователей переменного тока в постоянный, что, в свою очередь, позволило использовать более простые, а значит, более надежные генераторы переменного тока в автомобилях.

Первым зарубежным автопроизводителем, который развил эту идею и вывел ее на рынок легковых автомобилей, был Chrysler, имевший опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны США. В Википедии отмечается, что американская разработка «…повторяла разработку авторов из СССР» , первая конструкция генератора переменного тока была представлена в Советском Союзе за шесть лет до этого. Единственным, но важным улучшением американцев стало применение кремниевых выпрямительных диодов вместо селеновых.

Электрогенератор – один из составляющих элементов автономной электростанции , а также многих других. По сути, он и является самым важным элементом, без которого невозможна выработка электрической энергии . Электрогенератор преобразует вращательную механическую энергию в электрическую. Принцип его действия основан на так называемом явлении самоиндукции, когда в проводнике (катушке), двигающемся в силовых линиях магнитного поля возникает электродвижущая сила (ЭДС), которую можно (для лучшего понимания вопроса) назвать электрическим напряжением (хотя это и не одно и то же).

Составными частями электрического генератора являются магнитная система (в основном используются электромагниты) и система проводников (катушек). Первая создает магнитное поле, а вторая, вращаясь в нем, преобразует его в электрическое. Дополнительно в генераторе есть еще и система отвода напряжения (коллектор и щетки, соединение катушек определенным образом). Она собственно связывает генератор с потребителями электрического тока.

Получить электроэнергию можно и самому, проведя самый простейший опыт. Для этого нужно взять два разнополюсных магнита или повернуть два магнита разными полюсами друг к другу, и поместить между ними металлический проводник в виде рамки. К ее концам подключить небольшую (слабомощную) электрическую лампочку. Если рамку начать вращать в ту или другую сторону, лампочка начнет светится, то есть на концах рамки появилось электрическое напряжение, а через ее спираль потек электрический ток . Точно также происходит в электрогенераторе, стой лишь разницей, что в электрогенераторе более сложная система электромагнитов и намного сложнее катушка из проводников, обычно медных.

Электрогенераторы различаются как по типу привода, так и по виду выходного напряжения. По типу привода, который приводит его в движение:

  • Турбогенератор – приводится в движение при помощи паровой турбины или газотурбинного двигателя. В основном используются на больших (промышленных) электростанциях.
  • Гидрогенератор – приводится в движение при помощи гидравлической турбины. Применяется также на больших электростанциях, работающих посредством движения речной и морской воды.
  • Ветрогенератор – приводится в движение при помощи энергии ветра. Используется как в маленьких (частных) ветряных электростанциях , так и в больших промышленных.
  • Дизель-генератор и бензо-генератор приводятся в движение соответственно дизельным и бензиновым двигателем.

По виду выходного электрического тока:

  • Генераторы постоянного тока – на выходе получаем постоянный ток.
  • Генераторы переменного тока. Бывают однофазные и трехфазные, с однофазным и трехфазным выходным переменным током соответственно.

Различные типы генераторов имеют свои конструктивные особенности и практически несовместимые узлы. Объединяет их лишь общий принцип создания электромагнитного поля путем взаимного вращения одной системы катушек относительно другой либо относительно постоянных магнитов. Ввиду этих особенностей ремонт генераторов или их отдельных компонентов под силу только квалифицированным специалистам.

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.